Thème: Divisibilité et congruences

29/01/21

Il sera tenu compte de la présentation et de la rédaction dans l'appréciation des copies. Tous les résultats devront être soulignés.

Exercice 1 Questions de cours

- 1. Soit a et b deux entiers relatifs. Donner la définition de a divise b.
- 2. a) Compléter la propriété suivante : Soit a, b et c trois entiers relatifs.
 - Si $c \mid a$ et $c \mid b$, alors pour tous m, n appartenant à \mathbb{Z} ,.....
 - b) Démontrer cette propriété.

Exercice 2

Les deux questions sont indépendantes.

- 1. Soit a et b deux entiers relatifs.
 - a) Développer $(a + b)^3$.
 - b) Démontrer que : 3 divise $(a + b)^3 \iff 3$ divise $a^3 + b^3$.
- 2. Déterminer tous les couples d'entiers naturels (x; y) vérifiant $4x^2 y^2 = 20$.

Exercice 3

Pour tout $n \in \mathbb{N}$, on pose

$$a_n = 3^{3n+3} - 26n - 27.$$

- 1. Calculer a_0 , a_1 et a_2 et montrer que ces trois entiers sont tous divisibles par 169.
- **2.** Montrer que, pour tout $n \in \mathbb{N}$, $a_{n+1} 27a_n = 676(n+1)$.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, 169 divise a_n .

Exercice 4

- 1. Trouver tous les entiers naturels n dont le quotient dans la division euclidienne par 5 donne un quotient égal à trois fois le reste.
- 2. Soit a et b deux entiers relatifs avec $b \le 20$. Dans la division euclidienne de a par b, le reste est 8 et pour celle de 2a par b, le reste est 5. Déterminer b.

Exercice 5

- 1. Déterminer l'ensemble des entiers x tels que $2x \equiv 4$ [6].
- 2. Déterminer l'ensemble des entiers x tels que $x^2 \equiv 2x$ [6].

Exercice 6

Soit $n \in \mathbb{N}$. On pose $A_n = 3^{4n+3} + 4^{2n+1}$.

- 1. Démontrer que $3^{4n} \equiv 1$ [5] et que $4^{2n} \equiv 1$ [5].
- **2.** En déduire que 5 divise $A_n 1$.
- **3.** Justifier que $A_n 1$ est pair.

BONUS!

Les deux questions sont indépendantes

- 1. a) Soit $a \in \mathbb{N}$. Justifier que, pour tout $N \in \mathbb{N}^*$, $a^N 1 = (a-1)\sum_{k=0}^{N-1} a^k$.
- b) En déduire que, pour tout $n \in \mathbb{N}$, 3 divise $4^{n+1} 1$.
- c) On pose $\forall n \in \mathbb{N}, u_n = n4^{n+1} (n+1)4^n + 1$.

En montrant au préalable que $\forall n \in \mathbb{N}, u_{n+1} = 4u_n + 3(4^{n+1} - 1)$, démontrer par récurrence que : $\forall n \in \mathbb{N}, 9$ divise u_n .

2. Soit a et m deux entiers naturels. On suppose qu'il existe au moins un entier non nul k tel que $a^k \equiv 1$ [m] et on note d le plus petit des entiers non nuls k tels que $a^k \equiv 1$ [m]. Démontrer que, pour tout $k \in \mathbb{N}$, $a^k \equiv 1$ [m] si et seulement si d divise k.

Indication : On pourra écrire la division euclidienne de n par d.