Sujet B

Question de cours

Donner la définition d'une suite géométrique.

Exercices

Exercice 1

On considère la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 3^n$. Montrer que la suite (v_n) définie par $v_n = \frac{u_n}{3^n}$ est une suite arithmético-géométrique. En déduire les valeurs de v_n puis de u_n .

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour tout $n\in\mathbb{N}$, par la relation de récurrence suivante : $u_{n+1}=\frac{u_n}{3+2u_n}$.

On admet que cette suite est bien définie et que $u_n > 0$ pour tout $n \in \mathbb{N}$.

On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=\frac{1}{u_n}$.

- (a) Calculer u_1 et u_2 . Au vu des trois premiers termes, la suite $(u_n)_{n\in\mathbb{N}}$ peut-elle être arithmétique ou géométrique?
- (b) Montrer que pour tout $n \in \mathbb{N}$, on a $v_{n+1} = 3v_n + 2$.
- (c) En déduire la forme explicite de la suite $(v_n)_{n\in\mathbb{N}}$ puis celle de la suite (u_n) .
- (d) Calculer, pour $n \in \mathbb{N}$, $\sum_{k=0}^{n} v_k$.

Corr ex 1

Vérifions donc que (v_n) est arithmético-géométrique : $v_{n+1} = \frac{u_{n+1}}{3^{n+1}} = \frac{2u_n + 3^n}{3^{n+1}} = \frac{2u_n}{3 \times 3^n} + \frac{3^n}{3^{n+1}} = \frac{2}{3}u_n + \frac{1}{3}$. La suite est donc arithmético-géométrique, il ne reste plus qu'à calculer son terme général. L'équation de point fixe associée est $x = \frac{2}{3}x + \frac{1}{3}$, qui a pour solution x = 1. On introduit donc la suite auxiliaire $w_n = v_n - 1$. Verifions que cette troisième suite est géométrique : $w_{n+1} = v_{n+1} - 1 = \frac{2}{3}v_n + \frac{1}{3} - 1 = \frac{2}{3}v_n - \frac{2}{3} = \frac{2}{3}(v_n - 1) = \frac{2}{3}w_n$. La suite (w_n) est donc géométrique de raison $\frac{2}{3}$ et de premier terme $w_0 = v_0 - 1 = \frac{u_0}{3^0} - 1 = -1$. Conclusion de nos calculs : $w_n = -\left(\frac{2}{3}\right)^n$, puis $v_n = w_n + 1 = 1 - \left(\frac{2}{3}\right)^n$, et enfin $u_n = 3^n v_n = 3^n \left(1 - \left(\frac{2}{3}\right)^n\right) = 3^n - 2^n$.