Sujet A

Exercice 1

Déterminer les fonctions dérivées sur / des fonctions suivantes :

$$f(x) = \left(\frac{1}{2}x + 2\right)^2$$

$$g(x) = \sqrt{3x - 9}$$

$$i(x) = e^{2\sqrt{x}-1}$$

$$j(x) = \left(\frac{x^2 - 1}{2x^2}\right)^2$$

Exercice 2

1. Soit la fonction f définie sur]-1; $+\infty[$ par $f(t) = \frac{1}{t(t+1)}$.

a) Déterminer a et b tel que $f(t) = \frac{a}{t} + \frac{b}{t+1}$.

b) En déduire une primitive de f.

2. Soit la fonction g définie sur \mathbb{R} par $g(x) = \frac{1}{(e^x + 1)^2}$.

a) Démontrer que pour tout $x \in \mathbb{R}$, $g(x) = 1 - \frac{e^x}{e^x + 1} - \frac{e^x}{\left(e^x + 1\right)^2}$.

b) En déduire une primitive de g.

3. a) Démontrer que la fonction F définie sur]0; $+\infty[$ par $F(x) = x^2 \ln x - \frac{1}{2}x^2$ est une primitive de la fonction f définie sur]0; $+\infty[$ par $f(x) = 2x \ln x$.

b) En déduire une primitive de la fonction g définie sur]0; $+\infty[$ par $g(x) = 2x \ln x - x^2$.

Exercice 3

Résoudre les équations suivantes :

$$e^x + e^{-x} = 4$$

$$\ln(1 + +x + x^2) = 2$$