D'après BAC ASIE 2015

Partie A

Soit *f* la fonction définie sur [0; 10] par

$$f(x) = x + e^{-x+1}.$$

Un logiciel de calcul formel donne les résultats ci-dessous :

1	$f(x) := x + \exp(-x + 1)$	
	// Interprète f	
	// Succès lors de la compilation f	
		$x \longmapsto x + \exp(-x + 1)$
2	derive $(f(x))$	
		$-\exp(-x+1)+1$
3	solve $(-\exp(-x+1)+1>0)$	
		[x>1]
4	derive (-exp(-x+1)+1)	
		$\exp(-x+1)$

- 1. Étude des variations de la fonction f
 - (a) En s'appuyant sur les résultats ci-dessus, déterminer les variations de la fonction f puis dresser son tableau de variation.
 - (b) En déduire que la fonction f admet un minimum dont on précisera la valeur.
- 2. Étudier la convexité de la fonction *f* sur l'intervalle [0; 10].

Partie B

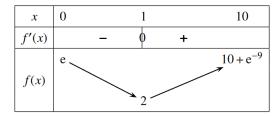
Une entreprise fabrique des objets. Sa capacité de production est limitée, compte tenu de l'outil de production utilisé, à mille objets par semaine. Le coût de revient est modélisé par la fonction f où x est le nombre d'objets fabriqués exprimé en centaines d'objets et f(x) le coût de revient exprimé en milliers d'euros.

- 1. Quel nombre d'objets faut-il produire pour que le coût de revient soit minimum?
- 2. Un objet fabriqué par cette entreprise est vendu 12 €. On appelle marge brute pour *x* centaines d'objets, la différence entre le montant obtenu par la vente de ces objets et leur coût de revient.
 - (a) Justifier que le montant obtenu par la vente de *x* centaines d'objets est 1,2*x* milliers d'euros.
 - (b) Montrer que la marge brute pour x centaines d'objets, notée g(x), en milliers d'euros, est donnée par : $g(x) = 0, 2x e^{-x+1}$.
 - (c) Montrer que la fonction g est strictement croissante sur l'intervalle $[0\,;\,10].$
- 3. (a) Montrer que l'équation g(x) = 0 possède une unique solution α sur l'intervalle [0; 10].
 - (b) Déterminer un encadrement de α d'amplitude 0,01.
- 4. En déduire la quantité minimale d'objets à produire afin que cette entreprise réalise une marge brute positive sur la vente de ces objets.

Son corrigé

PARTIE A

1. a) D'après le logiciel, $f'(x) = -e^{-x+1} + 1$ et f'(x) > 0 pour $x \in]1$; $+\infty[$. D'où le tableau de variations :



- b) La dérivée s'annule en changeant de signe en 1, et 1 n'est pas une borne donc f admet un extrémum en 1. Au vu des variations, il s'agit d'un minimum qui vaut 2.
- La ligne 4 du logiciel donne la dérivée de la dérivée soit f", donc f"(x) = e^{-x+1}.
 Une exponentielle étant toujours positive, on a pour tout x ∈ [0; 10], f"(x) > 0 ce qui signifie que f est convexe sur [0; 10].

PARTIE B

- 1. Sachant que le coût de revient est modélisé par la fonction f et que nous avons vu que f admet un minimum en 1, il faut donc produire 100 objets.
- 2. a) Chaque objet est vendu $12 \in$, donc la vente de x centaines d'objets rapporte 12x centaines d'euros, soit 1,2x milliers d'euros.
 - b) La marge brute est la différence entre le produit des ventes (soit 1,2x) et le coût de revient (f(x)), c'està-dire g(x) = 1,2x - f(x).

En remplaçant, $g(x) = 1, 2x - x - e^{-x+1} = 0, 2x - e^{-x+1}$.

- c) g est dérivable sur [0; 10] et $g'(x) = 0, 2 (-x)'e^{-x+1} = 0, 2 + e^{-x+1} > 0$ comme somme de 2 nombres strictement positifs.
- 3. a) g est continue, strictement croissante sur [0; 10].

g(0) = -e < 0 et $g(10) = 2 - e^{-1} > 0$ donc 0 est compris entre g(0) et g(10).

D'après le théorème de la valeur intermédiaire, il existe un unique réel $\alpha \in [0; 10]$ tel que $g(\alpha) = 0$.

- b) En utilisant les tables de la calculatrice, un encadrement de α est : 1,94 $\leq \alpha \leq$ 1,95.
- 4. L'entreprise réalise une marge brute positive lorsque $g(x) \ge 0$, soit pour $x \ge \alpha$, c'est donc à partir de 195 objets produits et vendus que l'entreprise va commencer à réaliser une marge brute positive.